Lecture 2

Decision Making
2.1 Relational and Logical Operators
Programs require relational and Boolean operators to create decision-making Boolean expressions. Table 2-1 shows the relational and Boolean operators in C++. Also notice that Table 2-1 contains the conditional assignment operator ?:. It has the following syntax:

(expression) ? trueValue : falseValue

The operator yields the trueValue if the expression is true (or nonzero) and returns the falseValue otherwise. Consider how this statement uses the conditional assignment operator to assign a value to a variable:

variable = (expression) ? trueValue : falseValue;

Table 2-1: The Relational and Boolean Operators in C++

	C++ Operator
	Meaning
	Example

	&&
	logical AND
	k > 1 && k < 11

	||
	logical OR
	k < 0 || k > 22

	!
	logical NOT
	!(k > 1 && k < 10)

	<
	Less than
	k < 12

	<=
	Less than or equal to
	k <= 33

	>
	greater than
	k > 45

	>=
	greater than or equal to
	k >= 77

	==
	equal to
	k == 32

	!=
	not equal to
	k != 33

	?:
	conditional assignment
	k = (k < 0)? 1 : k

	&&
	T

	F

	T

	T

	F

	F

	F

	F

	logical AND:

	logical OR:

||

T

F

T

T

T

F

T

F

	logical NOT:

!

T

F

F

T

Example:

41 < 65 is TRUE

41 <= 29 is FALSE

65 > 29 is TRUE

41 == 65 is FALSE

41 != 29 is TRUE

41 < 65 && 65 < 29 is FALSE

41 < 65 || 65 < 29 is TRUE

!(41 <= 65) is FALSE

(0) is FALSE
(45) is TRUE

!(14%7) && !(10%7) is FALSE
2.2 The Simple if Statement

C++ offers the simple if statement to support single-alternative decision making. The general syntax for the simple if statement is:

// form 1

if (condition)

 statement;

// form 2

if (condition) {

 // sequence of statement

}

The if statement uses the keyword if followed by the parentheses that contain the tested condition. If that condition is true, the program executes the statement (see form 1) or the block of statements (see form 2) that come after the tested condition. Otherwise, the program bypasses this statement (or block of statements).

Here are examples of the single-alternative if statement:

// example 1

if (nNum < 0)

 cout << "Value is negative!\n";

// example 2

if (i > 0 && i < 100)

 cout << "Number is in range 1 to 99\n";

// example 3

if (nCount < 1)

 nCount = 1;

The first example uses the if statement to display a message if the value in variable nNum is negative. The second example employs the if statement to display a message when the variable i contains an integer in the range of 1 to 99. The third example assigns 1 to variable nCount if that variable contains a value that is less than 1.
Example :

Figure 2.1 shows an example for using if statement to specify if the entered number is greater than 100.

Here’s an example of the program’s output when the number entered by the user is greater than 100:

Enter a number: 2000

That number is greater than 100

If the number entered is not greater than 100, the program will terminate without printing the second line.
2.3 The if-else Statement

C++ enables the if statement to support dual-alternative decision making. The general syntax for the dual-alternative if statement is:

if (condition)

 // statement or block of statements

else

 // statement or block of statements

The dual-alternative if statement uses the keyword else to separate the two sets of statements that offer the alternative actions. If the tested condition is true, the program executes the statement or statement block that comes after the tested condition. Otherwise, program execution resumes after the keyword else and executes the subsequent statement or statement block.

Here are examples of the dual-alternative if statement:

// example 1

if (nNum < 0)

 cout << "Value is negative\n";

else

 cout << "Value is 0 or greater\n"

// example 2

if (i > 0 && i < 100)

 j = i * i;

else

 j = 100;

// example 3

if (nCount < 1)

 nCount = 1

else

 nCount--;

The first example uses the if statement to determine whether or not the value in variable nNum is negative. If this condition is true, the if statement display the message “Value is negative.” Otherwise, the if statement executes the statement in the else clause to display the message “Value is 0 or greater.”
The second example employs the if statement to determine if the variable i contains an integer in the range of 1 to 99. If this condition is true, the statement assigns the expression i * i to the variable j. Otherwise, the if statement executes the else clause statement to assign 100 to the variable j.
The third example uses the if statement to determine whether or not the value in variable nCount is less than 1. If this condition is true, the if statement assigns 1 to variable nCount. Otherwise, the if statement executes the else clause statement to decrement the value in variable nCount.
Example:

Here’s a variation of our IF example, with an else added to the if:

2.4 The Multiple-Alternative if Statement

C++ also permits the if statement to support multiple-alternative decision making. The general syntax for the multiple-alternative if statement is:

if (condition1)

 // statement #1 or block of statements #1

else if (condition2)

 // statement #2 or block of statements #2

else if (condition3)

 // statement #3 or block of statements #3

// other else if clauses

else

 // catch-all statement or catch-all block of statements

The multiple-alternative if statement allows a routine to test a battery of conditions and take one of multiple courses of action. The if statement tests the Boolean expressions condition1, condition2, condition3, and so on in that sequence. The first condition that is true causes the runtime system to execute its associated statements. Program execution resumes after the end of the if statement. If none of the tested conditions are true, the program executes the statements in the catch-all else clause (if one is used).

Here is an example of a multiple-alternative if statement:

if (N >= 0 && N < 10)

 cout << "Variable N is a single digit\n";

else if (N >= 10 && N < 100)

 cout << "Variable N has two digits\n";

else if (N >= 100 && N < 1000)

 cout << "Variable N has three digits\n";

else if (N >= 1000)

 cout << "Variable N has four or more digits\n";

else

 cout << "Variable N is negative\n";

This code snippet classifies the value in variable N as follows:

· The condition of the if clause determines whether or not the variable N contains an integer in the range of 0 to 9.

· The first else if clause determines whether or not the variable N contains an integer in the range of 10 to 99.

· The second else if clause determines whether or not the variable N contains an integer in the range of 100 to 999.

· The third else if clause determines whether or not the variable N contains an integer equal to or greater than 1000.

Each of the if and else if clauses display a message reflecting the value in variable N. The catch-all else clause displays the message that the variable N contains a negative value.
Example:

Write a C++ program that accepts grade for a student then determines his graduation grade according to the incoming table:

	Criteria
	g > =90
	90>g>=80
	80>g>=70
	70>g>=60
	60>g

	Income level
	Excellent
	Very good
	good
	pass
	Fail

 Interaction with the program might look like this:

Enter a grade: 85
Graduation grade: very good

2.5 The switch Statement

C++ offers the switch statement to support multiple-alternative decision making. The general syntax for the multiple-alternative switch statement is:

switch(expression)

{

 case constantExpression1:

 // statement set #1

 break;

 case constantExpression2:

 // statement set #2

 break;

. . .

[default:

 // catch-all statements]

}

The switch statement examines the value of the expression, which must be integer or integer-compatible (as are characters and enumerated types). The condition of the switch can be a variable, a function call, or an expression that includes constants, variables, and function calls.

The switch statement uses case labels for comparing the tested expression with different values. C++ has the following rules about the case labels:

· The keyword case is followed by a single constant (either a literal constant or a constant expression), followed in turn by a colon.

· You can include a sequence of more than one case label; all such labels end up executing the first sequence of statements that follows.

· A case label cannot list a range of constant values. Each case label lists only one constant.

Program execution sequentially examines the values in the case labels. If a case label value matches the tested expression, the program executes the statements that come after the case label.

Example:

Write a program that asks the user to enter the item number and prints the price of this item according to the following table.
	ItemNo
	1
	2
	3
	4

	Price
	100
	200
	600
	150

Exercises
1. Write a program that asks the user to enter two integers, obtains the numbers from the user, then prints the larger number followed by the words "is larger." If the numbers are equal, print the message “These numbers are equal.”
2. Write a program that inputs three integers from the keyboard and prints the sum, average, product, smallest and largest of these numbers. The screen dialogue should appear as follows:
Input three different integers: 13 27 14
Sum is 54
Average is 18
Product is 4914
Smallest is 13
Largest is 27
3. Write a program that reads in five integers and determines and prints the largest and the smallest integers in the group. Use only the programming techniques you learned in this lecture.
4. Write a program that reads an integer and determines and prints whether it is odd or even. (Hint: Use the modulus operator. An even number is a multiple of two. Any multiple of two leaves a remainder of zero when divided by 2.)
5. Write a program that reads in two integers and determines and prints if the first is a multiple of the second. (Hint: Use the modulus operator.)
6. Write a program that inputs a five-digit number, separates the number into its individual digits and prints the digits separated from one another by three spaces each. (Hint: Use the integer division and modulus operators.) For example, if the user types in 42339 the program should print:
4 2 3 3 9
7. Write an algorithm and a C++ program that accepts an employee salary and a tax percentage then computes the monthly net salary and determine his income level according to the incoming table:

	Criteria
	ns > =5000
	50000>ns>=2000
	ns<2000

	Income level
	high
	moderate
	low

7. write a program that calculates the squares and cubes of the numbers from 0 to 10 and uses tabs to print the following table of values:
number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
// demonstrates IF statement

#include <iostream>

using namespace std;

int main()

{

int x;

cout << “Enter a number: “;

cin >> x;

if(x > 100)

cout << “That number is greater than 100\n”;

return 0;

}

// demonstrates IF...ELSE statememt

#include <iostream>

using namespace std;

int main()

{

int x;

cout << “\nEnter a number: “;

cin >> x;

if(x > 100)

	cout << “That number is greater than 100\n”;

else

	cout << “That number is not greater than 100\n”;

return 0;

}

#include <iostream.h>

int main()

{	int grade;

	cout<<"Enter grade : ";

	cin>>grade ;

	if(grade >=90)

		cout<<"\n Excellent"<<endl;

	else if (grade>=80)

			cout<<"\n Very good"<<endl;

		else if (grade>=70)

				cout<<"\n good"<<endl;

			else if (grade>=60)

					cout<<"\n pass"<<endl;

				else

					cout<<"\n Fail"<<endl;

	return 0;

}

#include <iostream.h>

int main()

{

	int ItemNo;

	cout<<"Enter the item no. : ";

	cin>>ItemNo ;

	switch(ItemNo)

	{	

		case 1:

				cout<<"\n the price is 100"<<endl;

				break;

		case 2:

			cout<<"\n the price is 200"<<endl;

				break;

		case 3:

			cout<<"\n the price is 600"<<endl;

				break;

		case 4:

			cout<<"\n the price is 150"<<endl;

				break;

		default:

			cout<<"\n the item no. not found"<<endl;

	}

return 0;

}

PAGE
12

